

Test Date: November 5th, 2024

embk.me/champ792

BREED ANCESTRY

Poodle (Small) : 50.1%
Bernese Mountain Dog : 44.5%
Poodle (Standard) : 5.4%

GENETIC STATS

Predicted adult weight: 64 lbs

TEST DETAILS

Kit number: EM-46226834 Swab number: 31220910410030

BREED ANCESTRY BY CHROMOSOME

Our advanced test identifies from where Champ inherited every part of the chromosome pairs in his genome.

			Breed	colors:			
	Poodle (Small)	Bernese Mount	tain Dog	Poodle (Standa	ard)	
1		2		3		4	
5		6		7		8	
9		10		11		12	
13		14		15		16	
17		18		19		20	
21		22		23		24	
25	-	26		27		28	
29	-	30		31		32	
33		34		35		36	
37	-	38					

Alternative Names Toy Poodle, Miniature Poodle

Fun Fact

Although Toy Poodles are the most popular dog breed in Japan, Poodles as a group are the eight most popular breed in the US, with miniature poodles being the most common variety. Test Date: November 5th, 2024

embk.me/champ792

POODLE (SMALL)

Miniature and toy poodles are varieties of the poodle breed which originated in Germany in the 15th century. Unlike the larger standard poodle (>15 inches tall), these small poodles were not developed for hunting---except for truffles!---and were generally used as lap dogs and companions. Small poodles are frequently used to create designer dogs like Schnoodles and Maltipoos with low-shedding, hypoallergenic coats. All poodles are highly intelligent and energetic, and need daily exercise and stimulation. They are overall healthy dogs, although heritable eye disease, epilepsy and allergies are relatively common, and toy poodles also have a heightened risk of accidents/trauma due to their small size.

Fun Fact Berners can haul up to 1,000 pounds -10 times their weight! Test Date: November 5th, 2024

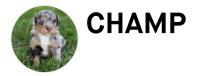
embk.me/champ792

embark

BERNESE MOUNTAIN DOG

The Bernese Mountain Dog, commonly referred to as a 'Berner', is a versatile working dog that is both visually pleasing and a loyal companion. The Bernese Mountain Dog was bred to herd cattle, pull carts and be a watchdog in the Swiss farmlands. The ancient 'Molosser' breed is considered the main contributor to Mastiff-type dogs, which include the Berner. It is likely that the Molosser bred with farm dogs from the Swiss Alps in the first century B.C., developing a number of Swiss Sennenhund ("mountain dog") breeds, including the Berner Sennenhund. It is thought that the Berner continued working on these Swiss farmlands for over 2,000 years, before their primary purpose switched from herding cattle to appearing as a show dog in the early 20th century. They were first classified as the Bernese Mountain Dog at this time by the Swiss Kennel Club. Following World War I, in which the breed nearly became extinct, Berners were exported to America before being accepted by the AKC as an official breed in 1937. Breed development faltered somewhat during World War II before Berners became an established and popular breed in the mid to late 20th century. This easygoing breed likes to be around their owners, where their calm and intelligent nature makes them a beloved family dog. Berners exhibit their working dog instincts in their willingness to learn and relative ease to be trained. Their heritage also often results in being protective and sometimes shy towards new people and dogs. Early socialization training allows the Bernese Mountain Dog to learn to overcome initial caution around new things. This breed is a large dog, weighing around 100 pounds, and likes to keep busy, so it is important training is conducted while young and manageable. While they are well-tempered dogs, they are slow to mature and often exhibit puppy behavior for a number of years before reaching full maturity. Due to their beautiful and thick double coat, Berners tend to shed generously, requiring frequent brushing to keep under control. Unfortunately, owing to their size and limited gene pool, Bernese Mountain Dogs are prone to health problems and have a life expectancy of between 6-8 years. Nonetheless, this lovable dog

Fun Fact


From 1989 to 1991, John Suter raced a team of Poodles in the Iditarod. Although his teams placed in the back half of the pack, he managed to win \$2,000 in prize money before retiring his poodle team. The Iditarod has since changed its rules to specify that only northern dog breeds can compete. Test Date: November 5th, 2024

embk.me/champ792

POODLE (STANDARD)

The Standard Poodle is a popular, water-loving dog used for centuries as a bird dog and popular pet. Poodles were established in Germany by the 15th century. Oddly enough, they are the national dog breed of France, and they were the most popular breed of dog in the United States throughout the 1960s and 70s. They're still quite popular today, owing to their intelligence, trainability, and non-shedding coats. Although well-known for their fancy fur, they're one of the most intelligent breeds of dog and require a lot of exercise and stimulation.

Test Date: November 5th, 2024

embk.me/champ792

MATERNAL LINE

Through Champ's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1e

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to "explode" out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

HAPLOTYPE: A22

Part of the large A1e haplogroup, we see this haplotype in Bernese Mountain Dogs, German Shepherd Dogs, Great Danes, and village dogs in the Democratic Republic of the Congo.

Test Date: November 5th, 2024

embk.me/champ792

PATERNAL LINE


Through Champ's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1b

For most of dog history, this haplogroup was probably quite rare. However, a couple hundred years ago it seems to have found its way into a prized male guard dog in Europe who had many offspring, including the ancestors of many European guard breeds such as Doberman Pinchers, St. Bernards, and Great Danes. Despite being rare, many of the most imposing dogs on Earth have it; strangely, so do many Pomeranians! Perhaps this explains why some Poms are so tough, acting like they're ten times their actual size! This lineage is most commonly found in working dogs, in particular guard dogs. With origins in Europe, it spread widely across other regions as Europeans took their dogs across the world.

HAPLOTYPE: Ha.7

Part of the A1b haplogroup, this haplotype is found in village dogs from Lebanon and Indonesia. Among breeds, it is also found in Miniature Schnauzer and Toy Poodle.

Test Date: November 5th, 2024

embk.me/champ792

RESULT

embark

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** variant do not produce dark hairs and will express a red pigment called pheomelanin over their entire body. The shade of red, which can range from a deep copper to white, depends on other genetic factors, including the Intensity loci. In addition to determining if a dog can develop dark hairs, the E Locus can give a dog a black "mask" or "widow's peak" unless the dog has overriding coat color genetic factors.

Dogs with one or two copies of the E^m variant may have a melanistic mask (dark facial hair as commonly seen in the German Shepherd Dog and Pug). In the absence of E^m, dogs with the E^g variant can have a "grizzle" phenotype (darker color on the head and top with a melanistic "widow's peak" and a lighter underside, commonly seen in the Afghan Hound and Borzoi and also referred to as "domino"). In the absence of both E^m and E variants, dogs with the E^a or E^h variants can express the grizzle phenotype. Additionally, a dog with any combination of two of the E^g, E^a, or E^h variants (example: E^gE^a) is also expected to express the grizzle phenotype.

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are **ee** at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as $K^{B}k^{y}$ may be brindle rather than black or brown. No dark mask or grizzle (EE)

More likely to have a patterned haircoat (k^yk^y)

Test Date: November 5th, 2024

embk.me/champ792

Any light hair likely

(Intermediate Red

yellow or tan

Pigmentation)

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Black/Brown and tan coat color pattern (a^ta^t)

D Locus (MLPH)

The D locus result that we report is determined by three different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and the less common alleles known as "**d2**" and "**d3**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies.

Dark areas of hair and skin are not lightened (DD)

Test Date: November 5th, 2024

embk.me/champ792

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Cocoa (HPS3)

Dogs with the **coco** genotype will produce dark brown pigment instead of black in both their hair and skin. Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. Dogs that have the **coco** genotype as well as the **bb** genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus.

No co alleles, not expressed (NN)

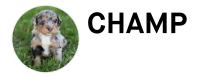
B Locus (TYRP1)

Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Black or gray hair and skin (Bb)

Saddle Tan (RALY)

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.


Not saddle tan patterned (II)

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely to have little to no white in coat (SS)

Test Date: November 5th, 2024

embk.me/champ792

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

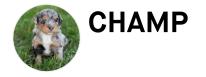
Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an **M*M*** result are likely to be phenotypically merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

R Locus (USH2A)

The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking.

H Locus (Harlequin)


This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found.

No harlequin alleles (hh)

One merle allele; may express merle (M*m)

Note: This locus includes several alleles. At the time this dog was genotyped Embark we could not distinguish all of the possible alleles.

Likely no impact on coat pattern (rr)

Test Date: November 5th, 2024

embk.me/champ792

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Panda White Spotting

Panda White Spotting originated in a line of German Shepherd Dogs and causes a mostly symmetrical white spotting of the head and/or body. This is a dominant variant of the KIT gene, which has a role in pigmentation.

Dogs with one copy of the I allele will exhibit this white spotting. Dogs with two copies of the I allele have never been observed, as two copies of the variant is suspected to be lethal to the developing embryo. Dogs with the **NN** result will not exhibit white spotting due to this variant.

Not expected to display Panda pattern (NN)

Test Date: November 5th, 2024

embk.me/champ792

RESULT

TRAITS: OTHER COAT TRAITS

TRAIT

Furnishings (RSPO2)

Dogs with one or two copies of the **F** allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two **I** alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion.

Likely furnished (mustache, beard, and/or eyebrows) (FF)

Test Date: November 5th, 2024

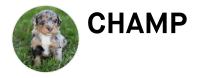
embk.me/champ792

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Coat Length (FGF5)

The FGF5 gene affects hair length in many species, including cats, dogs, mice, and humans. In dogs, an **Lh** allele confers a long, silky hair coat across many breeds, including Yorkshire Terriers, Cocker Spaniels, and Golden Retrievers, while the **Sh** allele causes a shorter coat, as seen in the Boxer or the American Staffordshire Terrier. In certain breeds, such as the Pembroke Welsh Corgi and French Bulldog, the long haircoat is described as "fluffy". The coat length determined by FGF5, as reported by us, is influenced by four genetic variants that work together to promote long hair.


The most common of these is the **Lh1** variant (G/T, CanFam3.1, chr32, g.4509367) and the less common ones are **Lh2** (C/T, CanFam3.1, chr32, g.4528639), **Lh3** (16bp deletion, CanFam3.1, chr32, g.4528616), and **Lh4** (GG insertion, CanFam3.1, chr32, g.4528621). The FGF5_Lh1 variant is found across many dog breeds. The less common alleles, FGF5_Lh2, have been found in the Akita, Samoyed, and Siberian Husky, FGF5_Lh3 have been found in the Eurasier, and FGF5_Lh4 have been found in the Afghan Hound, Eurasier, and French Bulldog.

The **Lh** alleles have a recessive mode of inheritance, meaning that two copies of the **Lh** alleles are required to have long hair. The presence of two Lh alleles at any of these FGF5 loci is expected to result in long hair. One copy each of **Lh1** and **Lh2** have been found in Samoyeds, one copy each of **Lh1** and **Lh3** have been found in Eurasiers, and one copy each of **Lh1** and **Lh4** have been found in the Afghan Hounds and Eurasiers.

Interestingly, the Lh3 variant, a 16 base pair deletion, encompasses the Lh4 variant (GG insertion). The presence of one or two copies of Lh3 influences the outcome at the Lh4 locus. When two copies of Lh3 are present, there will be no reportable result for the FGF5_Lh4 locus. With one copy of Lh3, Lh4 can have either one copy of the variant allele or the normal allele. The overall FGF5 result remains unaffected by this.

RESULT

Likely long coat (LhLh)

Test Date: November 5th, 2024

embk.me/champ792

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Shedding (MC5R)

Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Likely light shedding (TT)

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

Hairlessness (FOXI3)

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth
 shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and
 Chinese Crested (other hairless breeds have different mutations). Dogs with the NDup genotype are likely
 to be hairless while dogs with the NN genotype are likely to have a normal coat. The DupDup genotype has
 never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that
 this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** variant on to their offspring.

Very unlikely to be hairless (NN)

Test Date: November 5th, 2024

embk.me/champ792

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

RESULT

Oculocutaneous Albinism Type 2 (SLC45A2)

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Likely not albino (NN)

Test Date: November 5th, 2024

embk.me/champ792

RESULT

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Likely medium or long muzzle (CC)

Tail Length (T)


Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Likely normal-length tail (CC)

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws.

Likely to have hind dew claws (CT)

Test Date: November 5th, 2024

embk.me/champ792

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Chondrodysplasia (Chr. 18 FGF4 Retrogene)

Dogs with one or two copies of the I allele will exhibit a short-legged trait known as chondrodysplasia (CDPA). CDPA is a breed-defining characteristic of many breeds exhibiting the "short-legged, longbodied" appearance known as disproportionate dwarfism, including the corgi, dachshund and basset hound. The impact of the I allele on leg length is additive. Therefore, dogs with the II result display the largest reduction in leg length. Dogs with the **NI** genotype will have an intermediate leg length, while dogs with the **NN** result will not exhibit leg shortening due to this variant. Breeds that display disproportionate dwarfism also frequently inherit a genetic variant known as the chondrodystrophy (CDDY) variant. The CDDY variant also shortens legs (in a less significant amount than CDPA) but, secondarily, increases the risk of Type I Intervertebral Disc Disease (IVDD). Test results for CDDY are listed in this dog's health testing results under "Intervertebral Disc Disease (Type I)". In contrast, the CDPA variant has NOT been shown to increase the risk of IVDD.

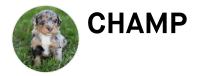
Not indicative of chondrodysplasia (normal leg length) (NN)

Less likely to have blue eyes (NN)

increase the risk of IVDD. **Blue Eye Color (ALX4)** Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still

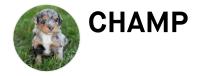
pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as

Back Muscling & Bulk, Large Breed (ACSL4)


predictive as direct tests of the mutation in some lines.

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely heavy muscling (TT)



DNA Test Report	Test Date: November 5th, 2024	embk.me/champ792
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Intermediate (NI)
The I allele is associated with smaller body size	».	internediate (M)
Body Size (IGFR1)		Larger (GG)
The A allele is associated with smaller body size	e.	
Body Size (STC2)		Intermediate (TA)
The A allele is associated with smaller body size	e.	Intermediate (TA)
Body Size (GHR - E191K)		Internedicto (CA)
The A allele is associated with smaller body size	e.	Intermediate (GA)
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smaller body size	e.	

Test Date: November 5th, 2024

embk.me/champ792

TRAITS: PERFORMANCE

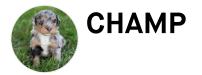
TRAIT

Altitude Adaptation (EPAS1)

This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one **A** allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Normal altitude

tolerance (GG)


RESULT

Normal food motivation (NN)

Appetite (POMC)

This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to
dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more
likely to have high food motivation, which can cause them to eat excessively, have higher body fat
percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can
contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We
measure this result using a linkage test.Normal
motivation

Test Date: November 5th, 2024

embk.me/champ792

HEALTH REPORT

DNA Test Report

How to interpret Champ's genetic health results:

If Champ inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Champ for that we did not detect the risk variant for.

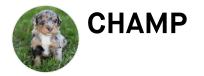
A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

Summary

Of the 274 genetic health risks we analyzed, we found 1 result that you should learn about.

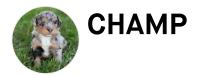
Notable results (1)


ALT Activity

Clear results

Breed-relevant (7)

Other (265)

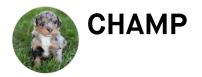

Test Date: November 5th, 2024

embk.me/champ792

BREED-RELEVANT RESULTS

Research studies indicate that these results are more relevant to dogs like Champ, and may influence his chances of developing certain health conditions.

O Degenerative Myelopathy, DM (SOD1A)	Clear
GM2 Gangliosidosis (HEXB, Poodle Variant)	Clear
Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12)	Clear
Neonatal Encephalopathy with Seizures, NEWS (ATF2)	Clear
Osteochondrodysplasia (SLC13A1, Poodle Variant)	Clear
Progressive Retinal Atrophy, prcd (PRCD Exon 1)	Clear
Von Willebrand Disease Type I, Type I vWD (VWF)	Clear

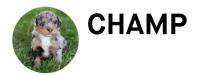

Test Date: November 5th, 2024

embk.me/champ792

OTHER RESULTS

Research has not yet linked these conditions to dogs with similar breeds to Champ. Review any increased risk or notable results to understand his potential risk and recommendations.

ALT Activity (GPT)	Notable
2-DHA Kidney & Bladder Stones (APRT)	Clear
Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant)	Clear
Alaskan Husky Encephalopathy (SLC19A3)	Clear
Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)	Clear
Alexander Disease (GFAP)	Clear
Anhidrotic Ectodermal Dysplasia (EDA Intron 8)	Clear
Autosomal Dominant Progressive Retinal Atrophy (RHO)	Clear
Bald Thigh Syndrome (IGFBP5)	Clear
Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant)	Clear
Bully Whippet Syndrome (MSTN)	Clear
Canine Elliptocytosis (SPTB Exon 30)	Clear
Canine Fucosidosis (FUCA1)	Clear
Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)	Clear
Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)	Clear
Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)	Clear
Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)	Clear
Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)	Clear

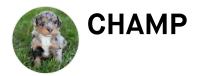


 DNA Test Report
 Test Date: November 5th, 2024
 embk.me/champ792

 OTHER RESULTS

 Oranine Multiple System Degeneration (SERAC1 Exon 4 Chinese Crested Variant)
 Clear

Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant)	Clear
Canine Multiple System Degeneration (SERAC1 Exon 15, Kerry Blue Terrier Variant)	Clear
Cardiomyopathy and Juvenile Mortality (YARS2)	Clear
Centronuclear Myopathy, CNM (PTPLA)	Clear
Cerebellar Hypoplasia (VLDLR, Eurasier Variant)	Clear
Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant)	Clear
Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cleft Palate, CP1 (DLX6 intron 2, Nova Scotia Duck Tolling Retriever Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant)	Clear
Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)	Clear
Collie Eye Anomaly (NHEJ1)	Clear
Complement 3 Deficiency, C3 Deficiency (C3)	Clear
Congenital Cornification Disorder (NSDHL, Chihuahua Variant)	Clear
Congenital Dyserythropoietic Anemia and Polymyopathy (EHPB1L1, Labrador Retriever Variant)	Clear
Ongenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant)	Clear
Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)	Clear
Congenital Hypothyroidism with Goiter (TPO Intron 13, French Bulldog Variant)	Clear
Congenital Hypothyroidism with Goiter (SLC5A5, Shih Tzu Variant)	Clear

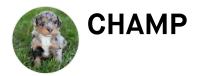


Test Date: November 5th, 2024

embk.me/champ792

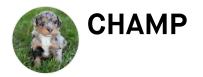
OTHER RESULTS

Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)	Clear
Congenital Muscular Dystrophy (LAMA2, Italian Greyhound)	Clear
Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)	Clear
Congenital Myasthenic Syndrome, CMS (COLQ, Golden Retriever Variant)	Clear
Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)	Clear
Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant)	Clear
Congenital Stationary Night Blindness (LRIT3, Beagle Variant)	Clear
Congenital Stationary Night Blindness (RPE65, Briard Variant)	Clear
Copper Toxicosis (Accumulating) (ATP7B)	Clear
Copper Toxicosis (Attenuating) (ATP7A, Labrador Retriever)	Clear
Copper Toxicosis (Attenuating) (RETN, Labrador Retriever)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2)	Clear
Craniomandibular Osteopathy, CMO (SLC37A2 Intron 16, Basset Hound Variant)	Clear
Cystinuria Type I-A (SLC3A1, Newfoundland Variant)	Clear
Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant)	Clear
Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant)	Clear
Darier Disease (ATP2A2, Irish Terrier Variant)	Clear
🐼 Day Blindness (CNGB3 Deletion, Alaskan Malamute Variant)	Clear



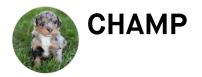
Test Date: November 5th, 2024

embk.me/champ792


OTHER RESULTS

Day Blindness (CNGA3 Exon 7, German Shepherd Variant)	Clear
O Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)	Clear
O Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant)	Clear
Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A)	Clear
Omyelinating Polyneuropathy (SBF2/MTRM13)	Clear
O Dental-Skeletal-Retinal Anomaly (MIA3, Cane Corso Variant)	Clear
O Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant)	Clear
Dilated Cardiomyopathy, DCM (RBM20, Schnauzer Variant)	Clear
O Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)	Clear
O Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)	Clear
Disproportionate Dwarfism (PRKG2, Dogo Argentino Variant)	Clear
Dry Eye Curly Coat Syndrome (FAM83H Exon 5)	Clear
Opstrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant)	Clear
Opstrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)	Clear
Early Bilateral Deafness (LOXHD1 Exon 38, Rottweiler Variant)	Clear
Early Onset Adult Deafness, EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant)	Clear
Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant)	Clear
Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant)	Clear

DNA Test Report	Test Date: November 5th, 2024	embk.me/champ792
OTHER RESULTS		
Ehlers-Danlos Syndrome (EDS) ((COL5A1, Labrador Retriever Variant)	Clear
🔗 Enamel Hypoplasia (ENAM Delet	tion, Italian Greyhound Variant)	Clear
🔗 Enamel Hypoplasia (ENAM SNP, I	Parson Russell Terrier Variant)	Clear
Sepisodic Falling Syndrome (BCA	N)	Clear
S Exercise-Induced Collapse, EIC	(DNM1)	Clear
S Factor VII Deficiency (F7 Exon 5))	Clear
Sactor XI Deficiency (F11 Exon 7,	Kerry Blue Terrier Variant)	Clear
Samilial Nephropathy (COL4A4 E	xon 3, Cocker Spaniel Variant)	Clear
Samilial Nephropathy (COL4A4 E	xon 30, English Springer Spaniel Variant)	Clear
🧭 Fanconi Syndrome (FAN1, Basen	ji Variant)	Clear
Setal-Onset Neonatal Neuroaxor	nal Dystrophy (MFN2, Giant Schnauzer Variant)	Clear
🧭 Glanzmann's Thrombasthenia Ty	vpe I (ITGA2B Exon 13, Great Pyrenees Variant)	Clear
🧭 Glanzmann's Thrombasthenia Ty	vpe I (ITGA2B Exon 12, Otterhound Variant)	Clear
Globoid Cell Leukodystrophy, Kra	abbe disease (GALC Exon 5, Terrier Variant)	Clear
Glycogen Storage Disease Type	IA, Von Gierke Disease, GSD IA (G6PC1, German Pinscher Variant)	Clear
Glycogen Storage Disease Type	IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)	Clear
Slycogen Storage Disease Type	IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)	Clear
Glycogen storage disease Type V and English Springer Spaniel Va	VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet riant)	Clear

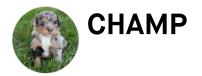


DNA Test Report	Test Date: November 5th, 2024

embk.me/champ792

OTHER RESULTS

Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)	Clear
GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)	Clear
GM2 Gangliosidosis (HEXA, Japanese Chin Variant)	Clear
Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)	Clear
Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3)	Clear
Hemophilia A (F8 Exon 11, German Shepherd Variant 1)	Clear
Hemophilia A (F8 Exon 1, German Shepherd Variant 2)	Clear
Hemophilia A (F8 Exon 10, Boxer Variant)	Clear
Hemophilia B (F9 Exon 7, Terrier Variant)	Clear
Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)	Clear
Hereditary Ataxia (PNPLA8, Australian Shepherd Variant)	Clear
Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant)	Clear
Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant)	Clear
Hereditary Cataracts (FYCO1, Wirehaired Pointing Griffon Variant)	Clear
Hereditary Cerebellar Ataxia (SELENOP, Belgian Shepherd Variant)	Clear



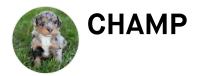
Test Date: November 5th, 2024

embk.me/champ792

OTHER RESULTS

Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant)	Clear
Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant)	Clear
Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant)	Clear
Hereditary Nasal Parakeratosis, HNPK (SUV39H2)	Clear
Hereditary Vitamin D-Resistant Rickets (VDR)	Clear
Hypocatalasia, Acatalasemia (CAT)	Clear
Hypomyelination and Tremors (FNIP2, Weimaraner Variant)	Clear
Hypophosphatasia (ALPL Exon 9, Karelian Bear Dog Variant)	Clear
Ichthyosis (NIPAL4, American Bulldog Variant)	Clear
Ichthyosis (ASPRV1 Exon 2, German Shepherd Variant)	Clear
Ichthyosis (SLC27A4, Great Dane Variant)	Clear
Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant)	Clear
Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)	Clear
Ichthyosis, ICH2 (ABHD5, Golden Retriever Variant)	Clear
Inflammatory Myopathy (SLC25A12)	Clear
Inherited Myopathy of Great Danes (BIN1)	Clear
Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant)	Clear

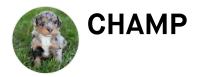
DNA Test Report	Test Date: November 5th, 2024	embk.me/champ792
OTHER RESULTS		
🧭 Junctional Epidermolysis Bullosa (LA	MA3 Exon 66, Australian Cattle Dog Variant)	Clear
🧭 Junctional Epidermolysis Bullosa (LA	MB3 Exon 11, Australian Shepherd Variant)	Clear
Juvenile Epilepsy (LGI2)		Clear
Juvenile Laryngeal Paralysis and Poly	neuropathy (RAB3GAP1, Rottweiler Variant)	Clear
Juvenile Myoclonic Epilepsy (DIRAS1)	Clear
⊘ L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)	Clear
⊘ Lagotto Storage Disease (ATG4D)		Clear
Laryngeal Paralysis (RAPGEF6, Miniat	ture Bull Terrier Variant)	Clear
 Laryngeal Paralysis and Polyneuropat variant) 	thy (CNTNAP1, Leonberger, Saint Bernard, and Labrador Retriever	r Clear
🔗 Late Onset Spinocerebellar Ataxia (C.	APN1)	Clear
Late-Onset Neuronal Ceroid Lipofusc	inosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant)	Clear
Leonberger Polyneuropathy 1 (LPN1, J	ARHGEF10)	Clear
Leonberger Polyneuropathy 2 (GJA9)		Clear
Lethal Acrodermatitis, LAD (MKLN1)		Clear
Leukodystrophy (TSEN54 Exon 5, Sta	ndard Schnauzer Variant)	Clear
🔗 Ligneous Membranitis, LM (PLG)		Clear
C Limb Girdle Muscular Dystrophy (SGC	CD, Boston Terrier Variant)	Clear
⊘ Limb-Girdle Muscular Dystrophy 2D (SGCA Exon 3, Miniature Dachshund Variant)	Clear



Clear

DNA Test Report	Test Date: November 5th, 2024	embk.me/champ792
OTHER RESULTS		
Long QT Syndrome (KCNQ1)		Clear
O Lundehund Syndrome (LEPR	REL1)	Clear
Macular Corneal Dystrophy,	MCD (CHST6)	Clear
🔗 Malignant Hyperthermia (RY	R1)	Clear
May-Hegglin Anomaly (MYH	9)	Clear
Medium-Chain Acyl-CoA De Variant)	hydrogenase Deficiency, MCADD (ACADM, Cavalier King Charles Spa	niel Clear
Methemoglobinemia (CYB5	R3, Pit Bull Terrier Variant)	Clear
Methemoglobinemia (CYB5	R3)	Clear
Microphthalmia (RBP4 Exon	2, Soft Coated Wheaten Terrier Variant)	Clear
Mucopolysaccharidosis IIIB,	Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant)	Clear
 Mucopolysaccharidosis Type Variant) 	e IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshun	d Clear
Mucopolysaccharidosis Type Huntaway Variant)	e IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zeala	and Clear
 Mucopolysaccharidosis Type Variant) 	e VI, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pin	scher Clear
Mucopolysaccharidosis Type	e VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant	clear
Mucopolysaccharidosis Type	e VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)	Clear
Multiple Drug Sensitivity (AB	3CB1)	Clear
Muscular Dystrophy (DMD, C	avalier King Charles Spaniel Variant 1)	Clear

Muscular Dystrophy (DMD, Golden Retriever Variant)

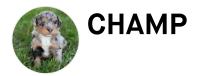


Test Date: November 5th, 2024

embk.me/champ792

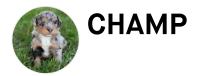
OTHER RESULTS

Muscular Dystrophy-Dystroglycanopathy (LARGE1, Labrador Retriever Variant)	Clear
Musladin-Lueke Syndrome, MLS (ADAMTSL2)	Clear
Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant)	Clear
Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)	Clear
Myotonia Congenita (CLCN1 Exon 19, Labrador Retriever Variant)	Clear
Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)	Clear
Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)	Clear
Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant)	Clear
Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)	Clear
Nemaline Myopathy (NEB, American Bulldog Variant)	Clear
Neonatal Cerebellar Cortical Degeneration (SPTBN2, Beagle Variant)	Clear
Neonatal Interstitial Lung Disease (LAMP3)	Clear
Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant)	Clear
Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)	Clear



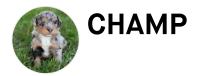
Test Date: November 5th, 2024

embk.me/champ792


OTHER RESULTS

Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant)	Clear
Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2 Exon 6, Bullmastiff Variant)	Clear
Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant)	Clear
Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant)	Clear
Osteogenesis Imperfecta (COL1A2, Beagle Variant)	Clear
Osteogenesis Imperfecta (SERPINH1, Dachshund Variant)	Clear
Osteogenesis Imperfecta (COL1A1, Golden Retriever Variant)	Clear
P2Y12 Receptor Platelet Disorder (P2Y12)	Clear
Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)	Clear
Paroxysmal Dyskinesia, PxD (PIGN)	Clear
Persistent Mullerian Duct Syndrome, PMDS (AMHR2)	Clear
Pituitary Dwarfism (POU1F1 Intron 4, Karelian Bear Dog Variant)	Clear

DNA Test Report	Test Date: November 5th, 2024	embk.me/champ792
OTHER RESULTS		
Platelet Factor X Receptor Deficiency, Scot	t Syndrome (TMEM16F)	Clear
Polycystic Kidney Disease, PKD (PKD1)		Clear
Pompe's Disease (GAA, Finnish and Swedis	sh Lapphund, Lapponian Herder Variant)	Clear
Prekallikrein Deficiency (KLKB1 Exon 8)		Clear
Primary Ciliary Dyskinesia, PCD (NME5, Ala	skan Malamute Variant)	Clear
Primary Ciliary Dyskinesia, PCD (STK36, Au	stralian Shepherd Variant)	Clear
Primary Ciliary Dyskinesia, PCD (CCDC39 E	xon 3, Old English Sheepdog Variant)	Clear
Primary Hyperoxaluria (AGXT)		Clear
Primary Lens Luxation (ADAMTS17)		Clear
Primary Open Angle Glaucoma (ADAMTS17	Exon 11, Basset Fauve de Bretagne Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10	Exon 17, Beagle Variant)	Clear
Primary Open Angle Glaucoma (ADAMTS10	Exon 9, Norwegian Elkhound Variant)	Clear
 Primary Open Angle Glaucoma and Primary Variant) 	Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei	Clear
Progressive Retinal Atrophy (SAG)		Clear
Progressive Retinal Atrophy (IFT122 Exon 2	26, Lapponian Herder Variant)	Clear
Progressive Retinal Atrophy 5, PRA5 (NECA	P1 Exon 6, Giant Schnauzer Variant)	Clear
Progressive Retinal Atrophy, Bardet-Biedl	Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant)	Clear
Progressive Retinal Atrophy, CNGA (CNGA1	Exon 9)	Clear

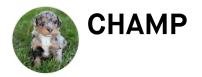


Test Date: November 5th, 2024

embk.me/champ792

OTHER RESULTS

Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)	Clear
Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)	Clear
Progressive Retinal Atrophy, PRA1 (CNGB1)	Clear
Progressive Retinal Atrophy, PRA3 (FAM161A)	Clear
Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)	Clear
Progressive Retinal Atrophy, rcd3 (PDE6A)	Clear
Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant)	Clear
Protein Losing Nephropathy, PLN (NPHS1)	Clear
Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)	Clear
Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant)	Clear
Raine Syndrome (FAM20C)	Clear
Recurrent Inflammatory Pulmonary Disease, RIPD (AKNA, Rough Collie Variant)	Clear
Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7)	Clear
Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant)	Clear

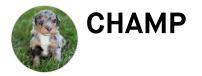


Test Date: November 5th, 2024

embk.me/champ792

OTHER RESULTS

Sensory Neuropathy (FAM134B, Border Collie Variant)	Clear
Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant)	Clear
Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant)	Clear
Shaking Puppy Syndrome (PLP1, English Springer Spaniel Variant)	Clear
Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)	Clear
Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)	Clear
Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant)	Clear
Spinocerebellar Ataxia (SCN8A, Alpine Dachsbracke Variant)	Clear
Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10)	Clear
Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2)	Clear
Stargardt Disease (ABCA4 Exon 28, Labrador Retriever Variant)	Clear
Succinic Semialdehyde Dehydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)	Clear
O Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)	Clear
Thrombopathia (RASGRP1 Exon 8, Landseer Variant)	Clear
Trapped Neutrophil Syndrome, TNS (VPS13B)	Clear
O Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)	Clear



Test Date: November 5th, 2024

embk.me/champ792

OTHER RESULTS

Ullrich-like Congenital Muscular Dystrophy (COL6A1 Exon 3, Landseer Variant)	Clear
O Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher)	Clear
Urate Kidney & Bladder Stones (SLC2A9)	Clear
Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant)	Clear
Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant)	Clear
Von Willebrand Disease Type III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Variant)	Clear
Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)	Clear
X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)	Clear
X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)	Clear
X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)	Clear
X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)	Clear
X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant)	Clear
Xanthine Urolithiasis (XDH, Mixed Breed Variant)	Clear
🧭 β-Mannosidosis (MANBA Exon 16, Mixed-Breed Variant)	Clear
Mast Cell Tumor	No result

Fembark

DNA Test Report

Test Date: November 5th, 2024

embk.me/champ792

HEALTH REPORT

Ontable result

ALT Activity

Champ inherited one copy of the variant we tested for Alanine Aminotransferase Activity

Why is this important to your vet?

Champ has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Champ has this genotype, as ALT is often used as an indicator of liver health and Champ is likely to have a lower than average resting ALT activity. As such, an increase in Champ's ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

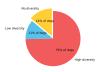
embk.me/champ792

INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.


12%

RESULT

Your Deg's COI: 12%

No Diversity

How common is this amount of diversity in mixed breed dogs:

No Diversity

How common is this amount of diversity in mixed breed dogs:

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.